Use Areas And Compatibility Guide | MATERIAL | USES | COMPATIBILITY | | | | |-------------------------------|--|---|---|--|--| | | | Reportedly Stable at High Temperatures (minimum interaction) | Reacts at High Temperatures (Unstable) | | | | Y ₂ O ₃ | Resistance to molten metals High-temperature lubrication Low Thermal Conductivity Low Electrical Conductivity Barrier/release layer Braze stop-off (for Ti) | U, Ti (reacts slightly), Be, V
Cr, Zr, Hf, Ni, Specialty Steels
Copper Alloys, Most Molten
Metals, Glasses, Slags, and
Salts | Acidic Materials, CuO
C (>1500 C, vac) | | | | ZrO ₂ | Resistance to molten metals
Very Low Thermal Conductivi
Low Electrical Conductivity
Precious Metal Processing | Al, Pt, Rh, Zr, Nb, Ta, Mo, W, U Cu, Fe, Pb, Cr, Mn, Zn, Bi, Be, Ni Co, Si, PbO, Pd, Ru, Steels, Ti or MoSi ₂ (reacts slightly), Acidic Slags, Titanates (below melting) | Basic steel slags, CuO
C (>1400 C, vac), Na
Ca, Sr, Ba, Li, K, Na ₂ CO ₃ | | | | Al_2O_3 | Resistance to molten metals
Low Electrical Conductivity
High Thermal Conductivity
Reaction-barrier layer | Mo, Ni, Nb, Ta, Cu, Sn, Bi, Pr, Rh W, Pt, Au, Al, Pb, Zn, Ag, V, Co, Fe Cr, Mn, Steels, Acidic & Basic Slags Silicides, Phosphates, S, Se, Te, Sb As, P, Be-Mg-Ca (reacts slightly) Ga, Na ₂ CO ₃ | | | | | BN | Resistance to molten metals
High-temperature lubrication
Low Electrical Conductivity
High Thermal Conductivity
Molten salt resistance
Molten glass resistance
Release agent for hot-formin | Molten Halide Salts, Steels, Ge, Sb
In, Cu, Sn, Cd, Stainless Steels, W
C, MoSi ₂ , Non-Lead Glasses
ZrO ₂ & Y ₂ O ₃ (to BN dissociation) | Li, Ni (molten), Pt, U, Ce
Be, Mo, Cl ₂ , MoO _x , PbO _x
High-Lead Glasses, Cr ₂ O ₃
Sb ₂ O ₃ , AsO ₃ , CuO, Bi ₂ O ₃
Molten K ₂ CO ₃ /KOH | | | | TiN
Rare E | Stability with Graphite/C
Electrical Conductivity
Thermal Conductivity
Resistance to molten metals
arth Metals | Sn, Bi, Fe, Carbon Steel, Basic Slag
Acid Slag, W, Mo, Nb, Al (wets)
Ta (to 1800 C), U, Ce, Sm-Co | NaOH, Be, Cd, MgO, Na
K, Pb (weak reaction)
Cryolite, ZrO ₂ (>1300 C) | | | Note: This data is for pure materials: performance of coatings may differ. This information is given for general purposes only. Some interactions may occur at certain temperatures and environmental conditions; thus it is advised that investigators evaluate their specific systems based on a thorough search of the literature. Many materials may be compatible/stable but were not known to us: thus, this list should not be considered exhaustive. ## **BASIC MATERIAL PROPERTIES** (may differ from coatings ... data is for pure materials/fully-dense) | PROPERTY | <u>Y₂O₃</u> | $\underline{ZrO}_{\underline{2}}$ | Al_2O_3 | BN | <u>TiN</u> | |---|-----------------------------------|-----------------------------------|------------------|---------------------------------------|-----------------------| | Formula Wt. (g) | 225.8 | 123.2 | 102.0 | 24.8 | 61.9 | | Density (g/cc) | 5.0 | 5.6 | 4.0 | 2.3 | 5.4 | | Crystal Structure | b.c.c. | Cubic/Monocl. | Hex. | Hex. | f.c.c. | | Thermal Expansion
(25-1000 C;
10 ⁻⁶ /C) | 8.2 | 10.5 | 8.5 | 0.8-7.5
directional | 8.7 | | Melting point (C) | 2415 | 2600 | 2050 | >2400
Sublimes | 2950 | | Specific Heat
(@293K, cal/g-K) | 0.109 | 0.109 | 0.184 | 0.117 | 0.179 | | Thermal Conductivity
(cal/cm-sec-K)
@100 C
@1400 C | 0.034
0.007 | 0.005
0.006 | 0.072
0.013 | 0.075 av.
0.050 av.
directional | 0.069
0.018 est. | | Electrical Resistivity
(@293K, ohm-cm) | 10 ⁸ | 10 ⁷ -10 ⁸ | 10 ¹⁶ | 1.7 x 10 ¹³ | 22 x 10 ⁻⁶ | | Emissivity @1300 K | 0.3 | 0.45 | 0.45 | 0.6 | 0.7 | | Chemical Resistance (molten metals/slags) | Superior | Excellent | Good | Excellent | Good | | Color | White | Cream | White | White | Golden Brown | | Knoop Microhardness
(kg/mm2 @ 100-g load) | 700 | 1300 | 2100 | 200 | 1800 | | Dielectric Strength
(volts/mil) | N.D. | 230 | 400 | 800-1000 | N.D. | | Dielectric Constant | 13-18 | 17-26 | 10 | 4 | N.D. | | Coefficient of Friction | N.D. | 0.85 | 0.7 | 0.2 (to 350 of 0.7 (at 600 of 0.7) | | Note: This data is for pure materials/fully-dense: properties of coatings may differ. This information is given for general purposes only.